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Based on statistical approach we described possible formation of spatially inhomogeneous distribution in the
system of interacting Bose particles. The condition of cluster formation in both gas and condensed phases was
obtained in this system. We studied the dynamics of cluster formation in the limit case of high temperatures.
We compared the cluster-formation processes in the attractive systemswith short-range interactiond and in the
gravitational system at the low temperatures of Bose-Einstein condensate regime.
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I. INTRODUCTION

The formation of a spatially inhomogeneous distribution
of interacting particles is a typical problem in condensed
matter physics. The conditions for the formation of such
structure are determined by the type of interaction. In the
articles inf1,2g a new approach to a statistical description of
interacting particles and phase transitions accompanied by
cluster formation was proposed. A cluster is described by the
function of the spatial distribution of particles. This function
is a soliton solution of the nonlinear equation, which arises in
most cases from a statistical description of interacting par-
ticles. A statistical description of the system of interacting
particles developed in papers Refs.f1–3g is based on the
application of the apparatus of quantum field theory
f4–9,9,10g and gives the possibility to find the spatial distri-
bution of particles, to calculate the cluster’s size, and to de-
termine the temperature of the phase transition into the state
under consideration. By means of this description it has been
shown that there is a possibility of cluster formation in the
system of attracting particles. The basic equation for the
function of the spatial distribution in the limit case of high
temperatures—that is, in the case of the Boltzmann
statistic—has been found. However, the dependence of equi-
librium size of the cluster on thermodynamical conditions
has not been determined, and the dynamics of its formation
has not been considered. As this approach is correct for dif-
ferent statistics too, as well the task of describing such sys-
tems like a gas of interacting Fermi and Bose particles arises,
where spatial inhomogeneity of the present type can appear.

Lately interest in the Bose condensate of particles with
negative scattering length has increased. Experiments
f11–13g have shown that the condensate collapses when the
number of particles is sufficient. The same result is given by
a numerical solution of the Gross-Pitaevskii equationf14g.
The collapse is tunneling through barrier of attraction of par-
ticles and quantum pressure which is the consequence of
wave packet diffusion. Such a situation is real if between the
particles there is a short-range attracting potential that can be

described by the scattering length. It is rather interesting to
compare the stability of the model condensate with the long-
range attracting potential—for example, 1/R sgravitating
gasd—and the condensate with short-range attracting poten-
tial sdescribed by negative scattering lengthd by testing the
Gross-Pitaevskii equation solution of the stability. Perhaps,
such a model can be useful for investigating the early stages
of a dynamically changing universef15g.

In this article, based on a statistical approachf1–3g, we
describe the formation of a spatially inhomogeneous distri-
bution in a system of interacting Bose particles. We obtain
the conditions of cluster formation in both the Bose gas and
condensate systems, and we describe the dynamics of cluster
formation in the limit case of high temperaturessBoltzmann
statisticsd. We compare the properties of spatial inhomogene-
ity in a Bose condensate of particles with negative scattering
length and of particles with long-range attraction about their
instability to collapse.

II. STATISTICAL APPROACH

Let us consider an interacting particle system being in
such conditions when, on the one hand, the wave’s thermal
length of a particle can be larger than the average distance
between them, so that it is necessary to take into account the
type of statistic, but on the other hand, this length is by far
smaller than the average scattering length that allows one to
describe the interaction classically disregarding dynamical
quantum correlations. The Hamiltonian of such a system
f1–3,10,16g is

Hsnd = o
s

«sns −
1

2o
ss8

Wss8nsns8 +
1

2o
ss8

Uss8nsns8, s1d

where«s is the additive part of the particle energy in the state
s sfor example, kinetic energy or energy in an external fieldd,
and Wss8 and Uss8 are the absolute values of the attraction
and repulsion energies of particles in the statess and s8,
respectively. The macroscopic state of the system is deter-
mined by the occupations numbersns. The subscripts corre-
sponds to variables that describe an individual particle state.

In Refs.f1–3g in order to investigate the thermodynamical
properties of the interaction particle system a Hubbard-
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Stratonovichf17–20g representation has been used for the
partition function:

Zn =
1

2pi
R djE DwE Dc expf− Ssj,w,cdg. s2d

The integral is calculated by the method of the “saddle
point” f21,22g across the point]S/]j=]S/]w=]S/]c=0.
This equation provides a solution of a multiparticle problem
in the sense that it selects those states of the system whose
contributions to the partition function are dominant.S is the
function which we call an action:

Ssj,w,cd =
1

2b
o
s,ś

sWs,s8
−1

wsws8 + Us,s8
−1 cscs8d + o

s

lnf1 − j

3exps− b«s + wsdcoscsg + sN + 1dln j, s3d

wherej is activity, b=1/kT is reverse temperature,s ands8
run all the states of the system,« is the kinetic energy, andN
is the number of particles. Two additional fieldsw andc are
introduced corresponding to attraction and repulsion. The
partition functions3d is written as a functional integral over
these fields.Ws,s8

−1 andUs,s8
−1 are inverse operators of the inter-

action:vss8
−1 =dss8L̂s8 whereL̂s8 is such an operator for which

the interaction’s potential is a Green function. But it is a
problem for each operator to find an inverse one. It can be
done for the potential of hard spheres, screened Coulomb
potential, and Newton potentialf10g; that is why we will
confine ourselves to gravitating Bose gas.

In the continuum approximation, the subscripts runs
through a continuum of values in the system of volumeV.
When integrating over impulses and coordinates, we bear in
mind that the unit of cell’s volume in the space of individual
states is equal tov=s2p"d3.

A. Gravitating Bose gas of hard spheres without a condensate

In this section we demonstrate the possibility of existence
of a spatially inhomogeneous distribution in the system of
interacting Bose particles, obtain the conditions of cluster
formation in this system, and study the dynamics of cluster
formation in the limit case of high temperature.

First of all let us consider a Bose gas of hard spheres of
diametersa. The inverse operator of interaction looks as
Urr8

−1 =s1/U0ddrr8 f1g, whereU0→`. Then, using Eqs.s3d and
sA1d, we have

S= −
V − V0

l3 g5/2sjd + lns1 − jd + sN + 1dln j

+
1

v
E

0

V0

dVE
0

`

d3p lnf1 − j exps− b«pdcoscg, s4d

where d3p;4pp2dp is the differential of volume in the
space of impulses,V0<2v0N is the volume which will be
occupied by the particles if they are collected close to each
other, andv0= 4

3psa/2d3 is the volume of one particle. The
equation for the saddle point is

]S

]c
=

V0

v
E

0

`

d3p
j exps− b«pdsinc

1 − j exps− b«pdcosc
= 0. s5d

The solution of this equation is

c = Hp, R, R0,

0, R. R0,
J s6d

whereR0=Î33V0/4p. The solutions6d means that so far as
two particles cannot come lesser distance than their diam-
eters, then the system can not be compressed to a volume
less than the volumeV0.

Now we shall consider a system of particles interacting by
gravitational attraction and hard-sphere repulsion. For New-
tonian attraction the inverse operator is known to beWrr8

−1

=s−1/4pGm2dDrdrr8, whereG is the gravitational constant,
m is a particle’s mass, andDr is the Laplace operator. Then,
using the result of the hard-sphere models6d, the action is
written in the following way:

S=
1

2b
E

V0

V s¹wd2

4pGm2dV+
1

v
E

V0

V

dVE d3p lnF1 − jew

3expS− b
p2

2m
DG +

1

v
E

0

V0

dVE d3p lnF1 + j

3expS− b
p2

2m
DG + lns1 − jd + sN + 1dln j

=E
V0

V

dVF s¹wd2

4rm
−

1

l3g5/2sjewdG +
V0

l3 f5/2sjd + lns1 − jd

+ sN + 1dln j, s7d

where rm=2pGm2b, and it should be noted that a special
Fermi function

f5/2sjd =
4

Îp
E

0

`

dxx2 lns1 + je−x2
d = o

l=1

`

s− 1dl+1 jl

l5/2

arisesf21,22g. It happens due to the repulsion of hard spheres
which changes the behavior of Bose particles statistically.

Let us introduce the dimensionless quantityr =R/ rm in-
stead ofR, a new variables=expsw /2d, and mark ina2

; rm
3 /l3. Since there is a logarithm in expressions7d and 0

,j,1, the condition that is applied to the fields is 0
,js2,1.

Let us consider the casej,1, which corresponds to the
absence of a Bose condensate:kn0l /V→0. The actionsin
spherical coordinatesd s7d can be written in terms of a new
above-mentioned variable:

S= 4pE
r0

` FS 1

s

]s

]r
D2

− a2g5/2sjs2dGr2dr +
V0

l3 f5/2sjd

+ sN + 1dln j. s8d

The equation for the saddle point is the equation of Lagrange
for the functionals8d. Here it is
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]2s

]r2 −
1

s
S ]s

]r
D2

+
1

2
a2]g5/2sjs2d

]s
s2

;
]2s

]r2 −
1

s
S ]s

]r
D2

+ a2s2o
l=1

`
jls2l−1

l3/2 = 0. s9d

This equation has not analytical solution. Let us consider the
limit casej→0 sBoltzmann gasd. Thens9d is reduced to

]2s

]r2 −
1

s
S ]s

]r
D2

+ ja2s3 = 0. s10d

This equation has a soliton solutionf1g

s =
D

Îja

1

coshDr
, s11d

whereD is an unknown integration constant which will be
determined below. Any soliton solution corresponds to a spa-
tially inhomogeneous distribution of particles—a finite-size
cluster. The corresponding asymptotics for Eq.s11d are s2

=1 for r =d, whered is the cluster size, ands→0 asr →`.
This solution describes the presence of particles in the inho-
mogeneous formation of the sized and the absence of par-
ticles at infinity, since in this case the spatial distribution’s
function is

rsrd = mj
1

l3s2, s12d

with normalizationrm
3 ersrdd3r =mN. Let us substitute Eq.

s11d in the action s8d taking into consideration that
limT→`f5/2sjd=j:

S= 4pE
r0

d

sD2 − 2ja2s2dr2dr +
V0

l3j + sN + 1dln j. s13d

Then we will integrate using the decomposition 1/coshx
<1−x2/2 in power series ofx;Dd!1:

S= − sV − V0d
D2

a2l3 +
V0

l3 i + sN + 1dln j. s14d

D2 is found, from the asymptotic, that 1=sD2/ja2df1
−D2d2g⇒D2<ja2+j2d2a4. Thus, assuming thatV!V0, we
have the result

S= −
V − 2V0

l3 j + sN + 1dln j −
V − V0

l3 j2d2a2, s15d

where j is found from the saddle point equation]S/]j=0
assuming thatl3/V@l6/V2, j0@jG fj0 andjG are activities
of ideal sA2d and gravitating Bose gas correspondingly, and
j0

sphandjG
sphare the same activities with the correction on the

volume of the particlesV0g:

j =
l3sN + 1d

V − V0
−

2d2a2l6sN + 1d2

sV − V0d2

<
l3sN + 1d

V
+

l3sN + 1dV0
2

V2

− S2d2a2l6sN + 1d2

V2 +
4d2a2l6sN + 1d2V0

V3 D
= j0 + j0

sph+ jG + jG
sph. s16d

Then integrating Eq.s15d on saddle points16d in accordance
with formula s2d we obtain the partition function

ZN = ZN
0 3 expF V

l3sj0
sph+ jG + jG

sphd −
2V0

l3 j − sN + 1d

3lnS1 +
j0

sph+ jG + jG
sph

j0
D +

V − V0

l3 j2d2a2G , s17d

whereZN
0 is the partition function of ideal gassA6d. Knowing

it we can find free energy of the system

F = F0 − kTF V

l3sj0
sph+ jG + jG

sphd −
2V0

l3 j − sN + 1d

3lnS1 +
j0

sph+ jG + jG
sph

j0
D +

V − V0

l3 j2d2a2G , s18d

whereF0 is free energy of ideal Bose gassA7d. Minimizing
Eq. s18d by the size of clusterd=D / rm and neglecting by the
correction on the volumeV0 in gravitational part of the ac-
tivity jG

sph ssincel6V0/V3!l6/V2!l3/Vd,

]F

]d
= − kT

da2l32sN + 1d2

V − V0
3 F1 − 4

d2a2l3sN + 1d
V − V0

G = 0,

s19d

we obtain the optimum radius of the cluster,

d0
2 =

V − V0

4Nl3a2 =
V

4Nrm
3 S1 −

V0

V
D s20d

or, in the dimension values,

D0
2 =

1

4

VkT

2pGm2N
S1 −

V0

V
D . s21d

The decrease of the cluster’s size with the increase of the
number of particles in the systemN is connected with a
closer packing of the particles in the cluster on account of the
increase of the gravitational energy. The rising of the clus-
ter’s size with temperature is connected with less close pack-
ing of the particles in connection with the resist of thermal
motion’s energy to gravitational energysFig. 1d. Such a situ-
ation is realized due to the long-range attractions1/Rd of
gravitational interactions.

Let us consider the dynamics of cluster formation. For it
we will use the equation of motion as
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]D

]t
= − x

]F

]D
, s22d

wherex is the coefficient of inverse dimension of diffusion
flow of mass through the cross section. Applying Eqs.s19d
and s21d we have

]D

]t
=

xNkT

2D0
4 s− D3 + DD0

2d. s23d

Let us mark inh;xNkT/2D0
4. Then we rewrite Eq.s23d in a

more convenient form:

Ḋ + hD3 − D0
2hD = 0. s24d

The solution of this equation on condition that the initial
state of the system be spatially homogeneous and assuming
that Ds0d /D0=1/2 sFig. 2d is

D2 =
D0

2

1 + 3 exps− 2hD0
2td

. s25d

Analogical resultsexponential approaching to the equilib-
rium sized has been obtained in paperf23g.

Now let us investigate the asymptotics of the solutions25d
for the stability. To do it let us consider a small deflection
from Eq. s25d,

Xstd = Dstd − D0std, s26d

where

D0std = H 0 on t → − `,

D0 on t → + `.
J

D0std=0 means that the state of the system is spatially ho-
mogeneous;D0std=D0 means that the state is spatially inho-
mogeneous with the cluster of equilibrium sizeD0. Let us
mark in B;shD0

2D−hD3d. ExpandingBsDd in power series
of Xstd and neglecting powers higher than the first we will
obtain the equation for the small deflection:

Ẋ =
dB

dDD=D0
X = fD0

2h − 3hsD0d2gX. s27d

The solution of this equation is

Xstd , H expsD0
2htd on D0 = 0,

exps− 2D0
2htd on D0 = D0.

J s28d

Suppose that the initial state of the system is spatially
homogeneoussD=0d. It is not unstable because the small
deflections26d increases exponentially,expsktd fwherek is
the Liapunov index in Eq.s28dg. Some fluctuation of density
that has appeared in the system brings about the appearance
of the gradient of the gravitational potential. In its turn, it
brings about the spatial inhomogeneity—a cluster with the
size approaching to the equilibrium values21d asymptoti-
cally. This spatially inhomogeneous state with the cluster of
size D=D0 is stable because the small deflection decreases
exponentially,exps−ktd.

III. BOSE CONDENSATE

Let us suppose that we have two model Bose condensates.
In one of them the particles interact by short-range attraction
forces. Such an interaction is described by the scattering
length a,0 f24g. The other condensate consists of hard
spheres with diameterasph.0 and gravitational force acts
between them only, which is long-range acting 1/R. The
gravitation interaction cannot be described by the scattering
length, because the change of the phase of theS wave at
scattering on the potential of effective radiusr0 is expressed
as −1/a+ 1

2k2r0+¯ but for the Newton potential,r0→`.
Condensates with negative scattering length were investi-

gated in both experimentalf11–13g and theoretical
f14,25–30g works. It is proved to be that such the system
becomes unstable to collapse if the number of atoms
achieves a critical numberNc. Let us compare the properties
of the Bose condensate of particles with negative scattering
length and with long-range attraction about instability to col-
lapse.

It is worth noting that the Bose condensate is a continuous
wave of matter, a coherent statef31g, and, hence, is de-
scribed by some wave function, which is the product of one-

FIG. 1. The density distributionrsDd of a cluster at different
temperatures and quantities of particlessschematicallyd. The solid
line corresponds to a lower temperaturesT1d or greater particle
numbersN1d: the dashed line corresponds to a higher temperature
sT2d or smaller particle numbersN2d: T2.T1,N2,N1. The dotted
line s2=1 determines the equilibrium radii of clustersD01 andD02

under the above-mentioned thermodynamical conditions.

FIG. 2. The dynamics of cluster formation in a gravitating Bose
gas sschematicallyd. Here D /D0 is a ratio of the cluster size in a
certain moment of time to the equilibrium size. An accidentallyst
=−`d formed fluctuation of density in the system brings about the
formation of a cluster. Its sizeD approaches the equilibrium sizeD0

asymptoticallyst= +`d.
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particle functions in the first approximationf25g. On the
other hand, the apparatus of statistical mechanics is based on
the postulate of “accidental phases”f21g, which is not carried
out in the coherent state. That is why we cannot use the
above-mentioned method for the investigation of spatial in-
homogeneity in the condensed phase. Then for investigating
such model systems we shall apply a method based on the
Gross-Pitaevskii equationf24,32,33g swe are considering the
spherical-symmetry problem onlyd:

i"
]c

]t
= −

"2

2m
S ]2c

]R2 +
2

R

]c

]R
D −

4p"2uau
m

Nucu2c + Vc,

s29d

i"
]w

]t
= −

"2

2m
S ]2w

]R2 +
2

R

]w

]R
D +

4p"2asph

m
Nuwu2w + Uw.

s30d

Herec andw are the wave functions of the condensates with
densitiesrsRd=mNucu2 or rsRd=mNuwu2, andm is the mass
of a particle.V is the energy of a particle in an external field
sharmonic potential of the trapd:

V = mv2R2/2. s31d

U is the energy of a particle in the gravitation field of the
condensate’s mass distributed by lowrsRd:

U = − mGE r4pR2dR

R
. s32d

This field plays the role of a field of the trapV due to the
property of the long-range action.

Equations29d is a nonlinear differential equation of the
second order with variable coefficients. Equations30d is a
nonlinear integral-differential equation of the second order
with variable coefficients. Hence, it is necessary to solve
them numerically. These equations have soliton solutions un-
der certain conditions that will be found out below. As in the
previous section the availability of such solutions means the
spatial inhomogeneity of the system cluster. The stability of
the soliton solution of Eq.s29d has been investigated numeri-
cally in f14g. We will study and compare some general prop-
erties of the stability of the soliton solution of Eqs.s29d and
s30d based on the equation for energy balance.

Let us assume that the condensate can be characterized by
the mean densityr=mN/V, whereV=s4p /3dsL /2d3 is a vol-
ume of the system andL is a spatial area occupied by the
condensate. Then the potential energy of the condensate
which described by Eq.s29d is as follows:

W=
"2N

2mL2 −
4puau"2

mV
N2 +

3

40
mNv2L2, s33d

where the first addendum is the energy of quantum pressure
f25g, caused by the principle of indefiniteness. This energy
resists compression of the gas. The second addendum is en-
ergy caused by a pseudopotentialf21g. This energy aspires to
compress the gas.

The third addendum is the energy of the condensate in the
external fields31d. This expression is obtained in the follow-

ing way: e0
L/2rwdV, wherew=v2R2/2 is potential of field of

the trap, anddV=4pR2dR is differential of volume.
One can see in Fig. 3 that this Bose condensate is not

stable. The instability to collapse happens due to the tunnel-
ing through the barrier of attracting the particles and quan-
tum pressure. Let us evaluate the length and height of the
barrier. It makes no sense to find the exact values because
expressions33d is approximate and its derivation is an equa-
tion of the fifth order. The length of the barrier is

l ,Î "

mv
− uauN. s34d

The height of the barrier is

Wm ,
"2

uau2Nm
. s35d

From the formulas34d one can see that the barrier disap-
pearssdotted line in Fig. 3d when the number of the particles
is more than a critical number:

Nc ,
Î"/mv

uau
. s36d

Let us appraise the region occupied by the model gravi-
tating Bose condensate and its energy. The potential energy
of this condensate which is described by Eq.s30d is as fol-
lows:

W=
"2N

2mL2 +
4pasph"

2

mV
N2 −

9

10
GsmNd21

L
, s37d

where the first addendum is the energy of quantum pressure
f25g. The second addendum is energy caused by a pseudo-
potential f21g. Since asph.0, then this energy aspires to
widen the gas.

FIG. 3. The schematic dependence of the potential energyW of
the Bose condensate on the value of the spatial areaL occupied by
the trapped condensate with short-range attractionsdash lined of
particles and the gravitating Bose condensatessolid lined. The first
of them can be in the stable state, but it can collapse through the
barrier by heightWm when the number of particlesN,Nc, where
Nc is a critical number. The condensate is sure to collapse when the
number of particles is sufficient:N.Nc sdotted lined. The second of
them is absolutely stable in the areaL0

G with energyW0
G.
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The third addendum is the energy of the condensate in a
gravitational field of the condensate’s mass. This expression
is obtained in the following way:12e0

L/2rwdV, where w=
−GerdV/R is the gravitational potential of the field of the
condensate’s mass.

This energy has a minimumsFig. 3d

W0
G , −

m5N3G2

"2 s38d

at the point

L0
G ,

"2

m3NG
S1 +Î1 +

N2asphGm3

"2 D . s39d

One can see in Fig. 3 that the gravitating Bose condensate
is stablesit cannot collapsed. Moreover, it is not in need of a
trap, unlike the condensate with short-range attraction. Such
behavior is the result of the long-range action of gravitation.

IV. CONCLUSION

In this paper we have studied the properties of the model
system of gravitating Bose gas in two cases: for the area of
above the point of a condensation, in particular within the
Boltzmann limit, based on the new method given in papers
Refs.f1–3g, and in the area of under the point of condensa-
tion snear absolute zerod. Our results are as follows.

The gravitational interaction of particles results in the for-
mation of a cluster of finite size, as the initial homogeneous
state is unstable. The size is determined by thermodynamical
conditions; in particular, with raising the temperature the
cluster size enlarges and it causes a decrease of the mean
density; the cluster size decreases when particles are added
in the system that is connected with the increase of the gravi-
tational energy. Such behavior is the consequence of the
long-range attraction of the gravitational interactions1/Rd.
The size of the cluster approaches the equilibrium size as-
ymptotically in the process of its formation. The state of the
system with spatially inhomogeneous function of distribution
corresponding to a cluster of equilibrium sizes21d is stable.

The equilibrium state is spatially inhomogeneous in the
gravitating Bose condensate. The gravitational interaction of
the particles cannot be described in terms of the scattering
length, because it is long-range acting. The comparison of
properties of the condensate with negative scattering length
to the model condensate with gravitational interactionsin
Newton approachd has shown that unlike the first condensate,
the second one is not in need of a trap and cannot collapse
but takes an equilibrium size depending on the balance of the
gravitation energy and quantum pressure energy.

Unfortunately, the results of the investigation of this
model do not allow experimental verification, but theysclus-
ter formations within the Boltzmann limitd can be useful for
the problems of astrophysics, in the investigation of the for-
mation of planet giants, stars, and their accumulation of gas-
dust matter, in particular.

APPENDIX: IDEAL BOSE GAS

Let us obtain some expressions used in this paper for ideal
Bose gas. Thus we will demonstrate the correctness and

greater rationality of our approach as compared with the tra-
ditional methodf21,22g.

In this casew=c=0. Then the actions3d for the system is

S=
1

v
E dVE 4pp2dp lnf1 − j exps− b«pdg + sN + 1dln j

= −
V

l3g5/2sjd + lns1 − jd + sN + 1dln j, sA1d

where

g5/2sjd = −
4

Îp
E

0

`

dxx2 lns1 − je−x2
d = o

l=1

`
jl

l5/2,

special Bose functionf21,22g. Hence it is clear that activity
alwaysj,1 unlike the Fermi system;«p=p2/2m is the ki-
netic energy of the particles; lns1−jd is the action for the
condensed phasesthe addendum withp=0 is as important as
the rest of the sum whenj→1d; l=Îb"2/2pm is the wave’s
thermal length of a particle. Then the equation for the saddle
point is as follows:

1

v
=

1

l3g3/2sjd +
1

V

j

1 − j
⇔

l3kn0l
V

=
l3

v
− g3/2sjd, sA2d

whereg3/2sjd=j]g5/2sjd /]j, v;V/N, andkn0l is the occupa-
tion of the zero level. Then the valuekn0l /V is positive on
condition

l3

v
. g3/2s1d. sA3d

Thus, we have a fallout of the terminal number of particles
on the level withp=0 sso-called Bose-Einstein condensa-
tiond. Part of the condensed particles is determined from ex-
pressionsA2d:

kn0l
N

= 1 −
v
vc

= 1 −S T

Tc
D3/2

, sA4d

with critical parameters

vc =
l3

g3/2s1d
, Tc =

2p"2

fvg3/2s1dg2/3mk
. sA5d

Let us consider the casej,1. The occupation of the zero
level is as insignificant as other levels withpÞ0, which
means the absence of a condensed phase. Such a situation is
realized on conditionT.Tc and v.vc. The partition func-
tion s2d is for this case

ZN = expF V

l3g5/2sjd − sN + 1dln jG , sA6d

where j is determined from Eq.sA2d on condition of the
condensed phase’s absence. We can find thermodynamical
functions knowing the partition function. The free energy
and pressure of the system are

F = − kT
V

l3g5/2sjd + NkT ln j, sA7d
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P = kT
1

l3g5/2sjd. sA8d

Let us consider the next casej→0 corresponding to high
temperaturesthe Boltzmann limitd. On this condition, expres-
sionssA2d and sA6d are reduced to

ZN = expF V

l3j − sN + 1dln jG <
VN

N!
S mkT

2p"2D3/2N

, sA9d

1

v
=

j

l3 . sA10d

At last, let us consider the casej→1. In this casekn0l /V
is terminal and is determined by formulasA4d. It means that
the condensed phase is present in the system. Such a situa-
tion is realized at sufficiently low temperature and small vol-
ume sT,Tc,v,vcd. ExpressionsA2d is reduced to

j

1 − j
@

V

l3g3/2s1d ⇒ N + 1 <
j

1 − j
. sA11d

In order to find the free energy in this case, let us define the
partition function

ZN = expF V

l3g5/2s1d − lns1 − jdG . sA12d

Then,

F

NkT
= −

v
l3g5/2s1d, sA13d

P = kT
1

l3g5/2s1d. sA14d

Let us find the internal energyU of the system proceeding
from the arranged analogy between the apparatus of thermo-
dynamics in our representation and the field theory. In order
to do it let us use the correlation −H=]Smech/]t and deter-
mine the conformitiesH↔U ,Smech↔Sterm,t↔1/kT, where
H is Hamilton’s function of the system,Smech and Sterm are
the actions for mechanic and thermodynamicsA1d systems,
respectively, t is time, and 1/kT is reverse temperature.
Then, with the help of expressionsA1d, we have

U = −
]S

]s1/kTd
=

3

2

VkT

l3 g5/2sjd =
3

2
PV. sA15d

ExpressionssA7d–sA9d and sA13d–sA15d coincide with
the ones obtained by the usual wayf21,22g, and they it con-
firms the correctness of the proposed approach.
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