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Cluster formation in the system of interacting Bose particles
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Based on statistical approach we described possible formation of spatially inhomogeneous distribution in the
system of interacting Bose particles. The condition of cluster formation in both gas and condensed phases was
obtained in this system. We studied the dynamics of cluster formation in the limit case of high temperatures.
We compared the cluster-formation processes in the attractive sysfémshort-range interactiorand in the
gravitational system at the low temperatures of Bose-Einstein condensate regime.
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[. INTRODUCTION described by the scattering length. It is rather interesting to
. ) . . ... compare the stability of the model condensate with the long-
The formation of a spatially inhomogeneous dlstrlbutlonrange attracting potential—for example, RL/(gravitating
of interacting particles is a typical problem in_ condensedgag_and the condensate with short-range attracting poten-
matter physics. The_condltlons for the fprmauon of suchyjq (described by negative scattering lenghy testing the
structure are determined by the type of interaction. In thesyoss-pitaevskii equation solution of the stability. Perhaps,

articles in[1,2] a new approach to a statistical description ofg;ch 4 model can be useful for investigating the early stages
interacting particles and phase transitions accompanied by 5 dynamically changing univer§as).

cluster formation was proposed. A cluster is described by the | this article, based on a statistical approdth3], we
function of the spatial distribution of particles. This function yegcripe the formation of a spatially inhomogeneous distri-
is a soliton solution of the nonlinear equation, which arises intion in a system of interacting Bose particles. We obtain
most cases from a statistical description of interacting parghe conditions of cluster formation in both the Bose gas and
ticle§. A statistical description of the system of interacting.ondensate systems, and we describe the dynamics of cluster
particles developed in papers Refa-3] is based on the formation in the limit case of high temperatur@oltzmann
application of the apparatus of quantum field theorygiagistics. We compare the properties of spatial inhomogene-
[4-9,9,1Q and gives the possibility to find the spatial distri- i, in 4 Bose condensate of particles with negative scattering

bution of particles, to calculate the cluster’s size, and to defgngih and of particles with long-range attraction about their
termine the temperature of the phase transition into the Staﬁﬁstability to collapse.

under consideration. By means of this description it has been

shown that there is a possibility of cluster formation in the

system of attracting particles. The basic equation for the Il. STATISTICAL APPROACH
function of the spatial distribution in the limit case of high
temperatures—that is, in the case of the Boltzmann
statistic—has been found. However, the dependence of eq

Let us consider an interacting particle system being in
uch conditions when, on the one hand, the wave’'s thermal

librium size of the cluster on thermodynamical conditions ength of a particle can be larger than the average distance

has not been determined, and the dynamics of its formatio etween th?”?' so that it is necessary to ta_ke into account the
has not been considered. As this approach is correct for di ype of statistic, but on the other hand, this length is by far

ferent statistics too, as well the task of describing such Sys§maller than the average scattering length that allows one to

tems like a gas of interacting Fermi and Bose patrticles arise§jescribe the interaction classica_lly d_isregarding dynamical
where spatial inhomogeneity of the present type can appefuantum correlations. The Hamiltonian of such a system

Lately interest in the Bose condensate of particles wit 1-310.18is
negative scattering length has increased. Experiments 1 1
[11-13 have shown that the condensate collapses when the ~ H(n) = > eqng— 52 WssNshgr + 52 Usgnig, (1)
number of particles is sufficient. The same result is given by s ss ss

a numerical solution of the Gross-Pitaevskii equalitd].  \yheres_is the additive part of the particle energy in the state

The collapse is tunneling through barrier of attraction of par-g (for example, kinetic energy or energy in an external ield

ticles and quantum pressure which is the consequence gfq\_, and U, are the absolute values of the attraction
wave packet diffusion. Such a situation is real if between theand repulsion energies of particles in the statesnd s’

particles there is a short-range attracting potential that can %spectively. The macroscopic state of the system is deter-

mined by the occupations numbetg The subscrips corre-

sponds to variables that describe an individual particle state.
*Electronic address: konst@orta.net.ua In Refs.[1-3] in order to investigate the thermodynamical
"Electronic address: blev@i.kiev.ua properties of the interaction particle system a Hubbard-
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Stratonovich[17-2( representation has been used for the

partition function:

Zn=o— dff Dgpr(//exp{—S(g,cp,df)]. 2

The integral is calculated by the method of the “saddle

point” [21,22 across the pointS/ 9é=adS/ =4S/ dy=0.
This equation provides a solution of a multiparticle problem

in the sense that it selects those states of the system who¥

contributions to the partition function are dominagtis the
function which we call an action:

253 W
Xexp(- Bes+ ¢Jcosgel + N+ DIné,  (3)

where¢ is activity, B=1/KT isreverse temperature,ands’
run all the states of the systemijs the kinetic energy, an
is the number of particles. Two additional fieldsand ¢ are

SRRV Y 0sos + Uy thstly) + 2 In[1-¢

introduced corresponding to attraction and repulsion. The

partition function(3) is written as a functional integral over

these fleldsV\fSS, andU_ S, are inverse operators of the inter-

actlon.w 6SgLS, whereLS, is such an operator for which
the interactlons potential is a Green function. But it is a

problem for each operator to find an inverse one. It can be
done for the potential of hard spheres, screened Coulomb

potential, and Newton potenti@ll0]; that is why we will
confine ourselves to gravitating Bose gas.

In the continuum approximation, the subscriptruns
through a continuum of values in the system of voluwhe
When integrating over impulses and coordinates, we bear i
mind that the unit of cell's volume in the space of individual
states is equal to=(27%)3.

A. Gravitating Bose gas of hard spheres without a condensate

In this section we demonstrate the possibility of existence
of a spatially inhomogeneous distribution in the system of
interacting Bose patrticles, obtain the conditions of cluster

formation in this system, and study the dynamics of clustef
formation in the limit case of high temperature.

First of all let us consider a Bose gas of hard spheres of

diametersa. The inverse operator of interaction looks as
rr/_(1/UO)5rr [1], whereUy— <. Then, using Eq93) and
(A1), we have

S

V-V,
=3 0§ + (L =&+ (N+ Din ¢

V, o
+lf°dvf d®pIn[1 - £exp(- Bey)cosy], (4)
wJg 0

where d®p=4mp?dp is the differential of volume in the
space of impulsesyy=2ugN is the volume which will be
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IS _Vo [ 5 Eexp=Bepsing
W w fo &y - £exp(- Bey)cosy ®
The solution of this equation is
_m R <Ry,
w—{ 0 R-R, (6)

ereRy=3$3V,/4m. The solution(6) means that so far as
two particles cannot come lesser distance than their diam-
eters, then the system can not be compressed to a volume
less than the volum¥,,.

Now we shall consider a system of particles interacting by
gravitational attraction and hard-sphere repulsion. For New-
tonian attraction the inverse operator is known to\ﬁsf#l,
=(-1/47Gm)A, 8, ., whereG is the gravitational constant,

m is a particle’s mass, andl, is the Laplace operator. Then,
using the result of the hard-sphere mo¢®), the action is
written in the following way:

Y (Vo)

1V s
2,8J 47erZdV+;fVOdVJd pln{l—ée“’
Xex —,BE1 +;fo dvfd pinf1+¢

2
><exp<— sz—m)} +IN(1-§+(N+1)In ¢

Vo) 1 v
= fvo dV|: (4:’;1) Fg5/2(§e¢’)] + )\_ng/Z(g) + |n(1 _ g)
N +(N+1In¢, o

wherer,,=27Gn¥3, and it should be noted that a special
Fermi function

3

5/2

f5/2(§)=irf dx In(1 + 67 2( s
NmJo [

ariseq21,27. It happens due to the repulsion of hard spheres
which changes the behavior of Bose particles statistically.

Let us introduce the dimensionless quantityR/r, |n-
stead ofR, a new variablec=exp(¢/2), and mark ina?
rm/)\3. Since there is a logarithm in expressiof) and 0
<¢<1, the condition that is applied to the field is 0
<éo?<1.

Let us consider the case<1, which corresponds to the
absence of a Bose condensafe;)/V—0. The action(in
spherical coordinateg7) can be written in terms of a new
above-mentioned variable:

o

“1(19
S=417f {(

g L\O I

+(N+1)n &.

r

2, 20, Vo
— a’gsy(é07) |rPdr + Ffslz(f)
(8)

occupied by the particles if they are collected close to each

other, anduozgw(a/2)3 is the volume of one patrticle. The
equation for the saddle point is

The equation for the saddle point is the equation of Lagrange
for the functional(8). Here it is
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Fo 1 ( (90’)2 L1 ) 2 N(N+1)  2d2eP\8(N+ 1)?
79 _~|1° it 1A Sl - _
o a\or 2 do V-V, (V=Vp)?
2 2 © dg2-1 AN(N+1) N3N+ 1)V
Ea—‘i-l(a—a)wzo@%—o 9 LD A%
a% o\ o | \ \%
202a”\8(N+ 1)?  4d2a\8(N + 1)V,
This equation has not analytical solution. Let us consider the - \2 + V3
limit case é— 0 (Boltzmann gas Then(9) is reduced to
=&+ &+ bo+ & (16)
Po 1[0 )\? 9 3 . . . .
T2 o\ o + éat0°=0. (100  Then integrating Eg(15) on saddle point16) in accordance
(o

with formula (2) we obtain the partition function

This equation has a soliton solutidh] v 2V,
Zy=Z} < expl (& o+ &) - 36— (N+)
A 1 A A

o=—F———",
VEa coshAr

(11)

PN+ g+ gsth) LV~ Vo

><|n<1+ — = deZaZ] (17)
0

where A is an unknown integration constant which will be 0. . ) ) .
determined below. Any soliton solution corresponds to a spahereZy is the partition function of ideal ga#6). Knowing
tially inhomogeneous distribution of particles—a finite-size it We can find free energy of the system

cluster. The corresponding asymptotics for Eifl) are o

=1 for r=d, whered is the cluster size, andd— 0 asr — . E=E.—KkT X( sphy & 4 goPh) — %5_ (N+1)

This solution describes the presence of particles in the inho- 0 \3°0 G e A3

mogeneous formation of the sizkand the absence of par- s g4 gsph

ticles at infinity, since in this case the spatial distribution’s ><|n<1 +=2 & 56
function is

V-V,
) + 3 OgZdZaZ], (19
0
1 whereF is free energy of ideal Bose g&&7). Minimizing
p(r) =mé=0?, (12 Eq. (18) by the size of clusted=D/r, and neglecting by the
A correction on the volum& in gravitational part of the ac-

. o , _ tivity £P" (sinceA®Vo/VB<\8/V2Z<)\3/V),
with normalizationr;, [ p(r)d>r=mN. Let us substitute Eq.

(1) in the action (8) taking into consideration that  sF y da®\32(N + 1)2 { d2a®\3(N + 1)]
lImTﬂwa/Z(g)zg: ad - V_Vo - V_VO ]
d V. (19
S= 47rf (A2-2¢a?0?)r?dr+ £+ (N+1)In £ (13
o A we obtain the optimum radius of the cluster,
Then we will integrate using the decomposition 1/crsh 2= V-V, V 1_& 20
~1-x?/2 in power series ok=Ad<1: 07 ANN3 2 T aNP, v (20
A%V, i ' i
S=— (V- Vg + —gi F(N+DIn & (14) or, in the dimension values,
a“\ A
, 1 VKT Vo
2 ; 2/ g2 0= J o ~ 2\t 7, (21)
A% is found, from the asymptotic, that 1&4/&a®)[1 427GnPN \%

—-A%d?]0 A?= éa?+ Ed2a®. Thus, assuming that<V,, we

The decrease of the cluster’s size with the increase of the
have the result

number of particles in the systeid is connected with a
closer packing of the particles in the cluster on account of the
~Vo 222, (15) increase of the gravitational energy. The rising of the clus-
3 ’ , . . . .
N ter’s size with temperature is connected with less close pack-
ing of the particles in connection with the resist of thermal
where ¢ is found from the saddle point equati@®/dé=0  motion’s energy to gravitational enerdlig. 1). Such a situ-
assuming thak3/V>\8/V2, &> &; [ andég are activities — ation is realized due to the long-range attractidiR) of
of ideal (A2) and gravitating Bose gas correspondingly, andgravitational interactions.
&Phand&PMare the same activities with the correction on the  Let us consider the dynamics of cluster formation. For it
volume of the particle¥/]: we will use the equation of motion as

V-2V
S=- 5 E+(N+Diné-

V
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Now let us investigate the asymptotics of the soluti2b)
for the stability. To do it let us consider a small deflection
from Eq. (25),

X(t) =D(t) - D(1), (26)

»(D)

where

0 Oon t— —oo,
D°(t) =
Dgon t— +o.

DO(t)=0 means that the state of the system is spatially ho-

FIG. 1. The density distributiop(D) of a cluster at different mogeneousP(t)=D, means that the state is spatially inho-
temperatures and quantities of particleshematically. The solid ~ mogeneous with the cluster of equilibrium sibg. Let us
line corresponds to a lower temperatuf®y) or greater particle mark inB= (7DD - 7D?). ExpandingB(D) in power series
number(N,): the dashed line corresponds to a higher temperatur@f X(t) and neglecting powers higher than the first we will
(T,) or smaller particle numbe(N,): T,>T;,N,<N;. The dotted  obtain the equation for the small deflection:
line 0?=1 determines the equilibrium radii of clustdbg, and Dy, d
under the above-mentioned thermodynamical conditions. X = B X = [D(Z)n— 37(DY)?IX. 27)

- dDD:DO

o (22)  The solution of this equation is

a oD’ ,
: . : : , I expDgnt) on  D°=0,
wherey is the coefficient of inverse dimension of diffusion X(t) ~ _ oD Do=D (28)
flow of mass through the cross section. Applying Ed®) expl o7t) on -0
and(21) we have Suppose that the initial state of the system is spatially
oD NKT homogeneougD=0). It is not unstable because the small
—= X—4(— D%+ DD3). (23)  deflection(26) increases exponentiallyexp(kt) [wherek is
& 2D the Liapunov index in Eq(28)]. Some fluctuation of density
Let us mark inp= yNKT/2D%. Then we rewrite Eq(23) in a that has appeared in the system brings about the appearance
more convenient form: of the gradient of the gravitational potential. In its turn, it
brings about the spatial inhomogeneity—a cluster with the
D+ 7D%-D37D =0. (24)  size approaching to the equilibrium val2l) asymptoti-

cally. This spatially inhomogeneous state with the cluster of

The solution of this equation on condition that the initial sjze D=Dj, is stable because the small deflection decreases
state of the system be spatially homogeneous and assumiggponentially~exp(—kt).

thatD(0)/Dy=1/2 (Fig. 2) is

DS o5 IIl. BOSE CONDENSATE
1+3exg- 27D’ &) Let us suppose that we have two model Bose condensates.
In one of them the particles interact by short-range attraction
forces. Such an interaction is described by the scattering
length a<0 [24]. The other condensate consists of hard
spheres with diameteds,,>0 and gravitational force acts
between them only, which is long-range actingR1/The
gravitation interaction cannot be described by the scattering
length, because the change of the phase ofSheave at
scattering on the potential of effective radiysis expressed
as —1Aa+%k2r0+--- but for the Newton potentiak,y— cc.
Condensates with negative scattering length were investi-
gated in both experimental[11-13 and theoretical
- - : [14,25-3Q works. It is proved to be that such the system
— 0 o becomes unstable to collapse if the number of atoms
¢ achieves a critical numbe\... Let us compare the properties
FIG. 2. The dynamics of cluster formation in a gravitating Bose Of the Bose condensate of particles with negative scattering

gas (schematically. Here D/Dy, is a ratio of the cluster size in a €ngth and with long-range attraction about instability to col-
certain moment of time to the equilibrium size. An accidentélly lapse.

=-w) formed fluctuation of density in the system brings about the It is worth noting that the Bose condensate is a continuous
formation of a cluster. Its sizB approaches the equilibrium sig ~ Wwave of matter, a coherent sta8l], and, hence, is de-
asymptotically(t=+). scribed by some wave function, which is the product of one-

2

Analogical result(exponential approaching to the equilib-
rium size has been obtained in pap&s3].

1.¢

0.0
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particle functions in the first approximatigi25]. On the ]
other hand, the apparatus of statistical mechanics is based on LAY S A g
the postulate of “accidental phaség&1], which is not carried \ 4
out in the coherent state. That is why we cannot use the ol N
above-mentioned method for the investigation of spatial in- = : T
homogeneity in the condensed phase. Then for investigating Y
such model systems we shall apply a method based on the Wﬁ}'
Gross-Pitaevskii equatidr24,32,33 (we are considering the Py
spherical-symmetry problem only Ly L
oy K2 [Py 204\ 4mhal _ _
ih—=-——|"—ZS+== |- —N|1/;|2¢+ Vi, FIG. 3. The schematic dependence of the potential enétgy
a 2m\JR" RAR m the Bose condensate on the value of the spatial lareecupied by
(29) the trapped condensate with short-range attractdash ling of
particles and the gravitating Bose condengat#id line). The first
2 2 of them can be in the stable state, but it can collapse through the
ih%’p =- ;l—rn(j%i + %Z—:) M—maS@N|<p|2¢ +Uep. barrier by heightW,, when the number of particled <N, where

N is a critical number. The condensate is sure to collapse when the
(30) number of particles is sufficient > N, (dotted ling. The second of

. . them is absolutely stable in the are8 with energyWe.
Here 4 and ¢ are the wave functions of the condensates with y g 9o

densitiesp(R)=mN {2 or p(R)=mN¢|?, andm is the mass
of a particle.V is the energy of a particle in an external field
(harmonic potential of the trap

ing way: [5”2pedV, wherep=w?R?/2 is potential of field of
the trap, andlV=47R?dR is differential of volume.

One can see in Fig. 3 that this Bose condensate is not
V=mw?R/2. (31)  stable. The instability to collapse happens due to the tunnel-
ing through the barrier of attracting the particles and quan-
tum pressure. Let us evaluate the length and height of the
barrier. It makes no sense to find the exact values because

U is the energy of a particle in the gravitation field of the
condensate’s mass distributed by lIp@R):

pATRZdR expression(33) is approximate and its derivation is an equa-
U=- mGJ R (32 tion of the fifth order. The length of the barrier is
This field plays the role of a field of the tray due to the
property of the long-range action. [ ~ ] — — |a|N. (34)
Equation(29) is a nonlinear differential equation of the w
second order with variable coefficients. Equati@d) is a
nonlinear integral-differential equation of the second ordefThe height of the barrier is
with variable coefficients. Hence, it is necessary to solve
them numerically. These equations have soliton solutions un- 52
der certain conditions that will be found out below. As in the W, ~ W. (35)

previous section the availability of such solutions means the

spatial inhomogeneity of the system cluster. The stability of From the formula34) one can see that the barrier disap-
the soliton solution of E¢(29) has been investigated numeri- pears(dotted line in Fig. 3when the number of the particles
cally in [14]. We will study and compare some general prop-is more than a critical number:

erties of the stability of the soliton solution of Eq29) and

(30) based on the equation for energy balance. e
Let us assume that the condensate can be characterized by o~ RLCLLL (36)
the mean densitp=mN/V, whereV=(47/3)(L/2)3is a vol- |a

ume of the system and is a spatial area occupied by the
condensate. Then the potential energy of the condensa{gti
which described by Eq29) is as follows:

Let us appraise the region occupied by the model gravi-
ng Bose condensate and its energy. The potential energy
of this condensate which is described by E28) is as fol-

#°N 4wk’ 3 - lows:
= 5~ N+ —mNol?, (33
2mL mV 40
2 2
where the first addendum is the energy of quantum pressure W= h_N2 + MNZ - 2G(mN)Zl, (37)
[25], caused by the principle of indefiniteness. This energy 2mL mV 10 L

resists compression of the gas. The second addendum is en-

ergy caused by a pseudopotenfi2l]. This energy aspires to where the first addendum is the energy of quantum pressure

compress the gas. [25]. The second addendum is energy caused by a pseudo-
The third addendum is the energy of the condensate in thpotential [21]. Since as,,>0, then this energy aspires to

external field(31). This expression is obtained in the follow- widen the gas.
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The third addendum is the energy of the condensate in greater rationality of our approach as compared with the tra-
gravitational field of the condensate’s mass. This expressioditional method 21,27.

is obtained in the following way3 [5%pedV, where o= In this casep==0. Then the actiofi3) for the system is
-G [ pdV/R is the gravitational potential of the field of the 1
Coq_dh?snseant:rzymr?;ss-a minimutFig. 3 S= - f dvf 4mp*dpIn[1 - £ exp(= Bep) ]+ (N+ 1)In &
m°N3G? \4
WS ~ - o (39) =- F,QS/z(f) +In(1-§+(N+1Din¢, (A1)

at the point where

52 N2ag, GNP 4 (~ -

L8~m(1+ 5] (9 95,2@):—?] dxx2|n<1—§e'xz>:2§—,2,
N1TJo 1=1

~ One can see in Fig. 3 that the gravitating Bose condensalgecial Bose functiof21,22. Hence it is clear that activity
is stable(it cannot collapse Moreover, it is not in need of a  gways¢<1 unlike the Fermi systems,=p?/2m is the ki-

trap, unlike the condensate with short-range attraction. SucRetic energy of the particles; (b-¢) isp the action for the
behavior is the result of the long-range action of gravitation-ondensed phagéhe addendum witp=0 is as important as

IV. CONCLUSION the rest of the sum whefi— 1); A=+ B#%/27m s the wave’s

) ) ) thermal length of a particle. Then the equation for the saddle
In this paper we have studied the properties of the mode‘goim is as follows:

system of gravitating Bose gas in two cases: for the area of
above the point of a condensation, in particular within the 1 1 1 ¢ A3(ng) _ A3
Boltzmann limit, based on the new method given in papers = 33928+ Vi-e~ vV o ~ G328, (A2)
Refs.[1-3], and in the area of under the point of condensa-
tion (near absolute zeyoOur results are as follows. wheregs () = £d9s/0(8) 1 9, v =VIN, and(n,) is the occupa-

The gravitational interaction of particles results in the for-tion of the zero level. Then the valyeg)/V is positive on
mation of a cluster of finite size, as the initial homogeneousondition
state is unstable. The size is determined by thermodynamical 3
conditions; in particular, with raising the temperature the A

\ ; > Ga/a1). (A3)

cluster size enlarges and it causes a decrease of the mean v
density; the cluster size decreases when particles are add(laﬁ . .
in the system that is connected with the increase of the gravi- us, we have_a fallout of the terminal n_umb_er of particles
tational energy. Such behavior is the consequence of th n the level withp=0 (so-called. Bosg-Emstem_ condensa-
long-range attraction of the gravitational interactidn'R). tion). Part of the condensed particles is determined from ex-

The size of the cluster approaches the equilibrium size asQreSS'OmAz):

ymptotically in the process of its formation. The state of the (Noy v T\372
system with spatially inhomogeneous function of distribution N 1-—=1- (;) : (A4)
corresponding to a cluster of equilibrium si¢l) is stable. Ve ¢
The equilibrium state is spatially inhomogeneous in thewith critical parameters
gravitating Bose condensate. The gravitational interaction of 5 5
the particles cannot be described in terms of the scattering - A 27 (A5)

L . . y Tem .
Iength,.beca}ushe it |sdlong-rang(.ahact|ng..The comparlslon o;‘] 7T gD’ ° [ugen(1)Pmk
properties of the condensate with negative scattering lengt . :
to the model condensate with gravitational interactiom Let us consider the cage<1. The occupation of the zero

Newton approachhas shown that unlike the first Condensate,level is as insignificant as other levels wip0, Wh'.Ch S
the second one is not in need of a trap and cannot collapé@ea_lns the absen_c_e of a condensed phase. Su_c_h a situation Is
but takes an equilibrium size depending on the balance of th@al'zed. on Con.d't'OﬁI—>T° andv>v.. The partition func-
gravitation energy and quantum pressure energy. tion (2) is for this case

Unfortunately, the results of the investigation of this vV
model do not allow experimental verification, but thelus- Zy= exp[ ng/z@ -(N+DIn¢|, (AB)
ter formations within the Boltzmann limican be useful for
the problems of astrophysics, in the investigation of the forwhere ¢ is determined from Eq(A2) on condition of the
mation of planet giants, stars, and their accumulation of gassondensed phase’s absence. We can find thermodynamical
dust matter, in particular. functions knowing the partition function. The free energy
APPENDIX: IDEAL BOSE GAS and pressure of the system are

Let us obtain some expressions used in this paper for ideal F=- kTX395/2(§) +NKTIn &, (A7)
Bose gas. Thus we will demonstrate the correctness and A
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1 Vv
P= kTF,QS/z(f)- (A8) Zy= eXP[ )\_395/2(1) -In(1-9 |. (A12)
Let us consider the next cage- 0 corresponding to high Then,
temperaturdéthe Boltzmann limit. On this condition, expres- = v
sions(A2) and (A6) are reduced to NKT =- Fgw(l), (A13)
p[ Vv ] VN< ka>3’2N
Zy=exp =é-(N+DIné| = — , (A9 1
N e IN*DIng | =S5z (A9) P=kT30s/2(1). (A14)
1 Let us find the internal energdy of the system proceeding
i é_ (A10) from the arranged analogy between the apparatus of thermo-
v A° dynamics in our representation and the field theory. In order

. . to do it let us use the correlationtH=0Se.{ ot and deter-
. At Iqst, let us con5|der. the cage- 1. In this caseng)/V mine the conformitiedd U Sy crs Serm tes 1/kT, where
is terminal and is determined by formula4). It means that 1y s Hamilton's function of the SystenS,ec,and Sem, are
the condensed phase is present in the system. Such a sitygle actions for mechanic and thermodynartAd) systems,
tion is realized at sufficiently low temperature and small vol-respectively,t is time, and 1KT is reverse temperature.

ume (T<T¢,v<v.). Expression(A2) is reduced to Then, with the help of expressidiAl), we have
JS 3VKT 3
5 \ 5 U=- = =—PV. Al15
1-¢> 30D 0 N+1~ oy (A11) JAKT) 2 A3 9s2(6) =5 (A15)

Expressions(A7)—(A9) and (A13)—(A15) coincide with
In order to find the free energy in this case, let us define théhe ones obtained by the usual wW&l,22], and they it con-
partition function firms the correctness of the proposed approach.
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